Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

New tools for characterizing early brown stem rot disease resistance signaling in soybean.

Identifieur interne : 000095 ( Main/Exploration ); précédent : 000094; suivant : 000096

New tools for characterizing early brown stem rot disease resistance signaling in soybean.

Auteurs : Chantal E. Mccabe [États-Unis] ; Michelle A. Graham [États-Unis]

Source :

RBID : pubmed:33217212

Abstract

Brown stem rot (BSR) reduces soybean [Glycine max (L.) Merr.] yield by up to 38%. The BSR causal agent is Phialophora gregata f. sp. sojae, a slow-growing, necrotrophic fungus whose life cycle includes latent and pathogenic phases, each lasting several weeks. Brown stem rot foliar symptoms are often misdiagnosed as other soybean diseases or nutrient stress, making BSR resistance especially difficult to phenotype. To shed light on the genes and networks contributing to P. gregata resistance, we conducted RNA sequencing (RNA-seq) of a resistant genotype (PI 437970, Rbs3). Leaf, stem, and root tissues were collected 12, 24, and 36 h after stab inoculation with P. gregata, or mock infection, in the plant stem. By using multiple tissues and time points, we could see that leaves, stems, and roots use the same defense pathways. Our analyses suggest that P. gregata induces a biphasic defense response, with pathogen-associated molecular pattern (PAMP) triggered immunity observed in leaves at 12 and 24 h after infection (HAI) and effector triggered immunity detected at 36 h after infection in the stems. Gene networks associated with defense, photosynthesis, nutrient homeostasis, DNA replication, and growth are the hallmarks of resistance to P. gregata. While P. gregata is a slow-growing pathogen, our results demonstrate that pathogen recognition occurs hours after infection. By exploiting the genes and networks described here, we will be able to develop novel diagnostic tools to facilitate breeding and screening for BSR resistance.

DOI: 10.1002/tpg2.20037
PubMed: 33217212


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">New tools for characterizing early brown stem rot disease resistance signaling in soybean.</title>
<author>
<name sortKey="Mccabe, Chantal E" sort="Mccabe, Chantal E" uniqKey="Mccabe C" first="Chantal E" last="Mccabe">Chantal E. Mccabe</name>
<affiliation wicri:level="1">
<nlm:affiliation>USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, 50011-1010, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, 50011-1010</wicri:regionArea>
<wicri:noRegion>50011-1010</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Graham, Michelle A" sort="Graham, Michelle A" uniqKey="Graham M" first="Michelle A" last="Graham">Michelle A. Graham</name>
<affiliation wicri:level="1">
<nlm:affiliation>USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, 50011-1010, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, 50011-1010</wicri:regionArea>
<wicri:noRegion>50011-1010</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Agronomy, Iowa State University, Ames, IA, 50011-1010, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Agronomy, Iowa State University, Ames, IA, 50011-1010</wicri:regionArea>
<orgName type="university">Université d'État de l'Iowa</orgName>
<placeName>
<settlement type="city">Ames (Iowa)</settlement>
<region type="state">Iowa</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33217212</idno>
<idno type="pmid">33217212</idno>
<idno type="doi">10.1002/tpg2.20037</idno>
<idno type="wicri:Area/Main/Corpus">000000</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000000</idno>
<idno type="wicri:Area/Main/Curation">000000</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000000</idno>
<idno type="wicri:Area/Main/Exploration">000000</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">New tools for characterizing early brown stem rot disease resistance signaling in soybean.</title>
<author>
<name sortKey="Mccabe, Chantal E" sort="Mccabe, Chantal E" uniqKey="Mccabe C" first="Chantal E" last="Mccabe">Chantal E. Mccabe</name>
<affiliation wicri:level="1">
<nlm:affiliation>USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, 50011-1010, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, 50011-1010</wicri:regionArea>
<wicri:noRegion>50011-1010</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Graham, Michelle A" sort="Graham, Michelle A" uniqKey="Graham M" first="Michelle A" last="Graham">Michelle A. Graham</name>
<affiliation wicri:level="1">
<nlm:affiliation>USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, 50011-1010, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, 50011-1010</wicri:regionArea>
<wicri:noRegion>50011-1010</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Agronomy, Iowa State University, Ames, IA, 50011-1010, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Agronomy, Iowa State University, Ames, IA, 50011-1010</wicri:regionArea>
<orgName type="university">Université d'État de l'Iowa</orgName>
<placeName>
<settlement type="city">Ames (Iowa)</settlement>
<region type="state">Iowa</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The plant genome</title>
<idno type="eISSN">1940-3372</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Brown stem rot (BSR) reduces soybean [Glycine max (L.) Merr.] yield by up to 38%. The BSR causal agent is Phialophora gregata f. sp. sojae, a slow-growing, necrotrophic fungus whose life cycle includes latent and pathogenic phases, each lasting several weeks. Brown stem rot foliar symptoms are often misdiagnosed as other soybean diseases or nutrient stress, making BSR resistance especially difficult to phenotype. To shed light on the genes and networks contributing to P. gregata resistance, we conducted RNA sequencing (RNA-seq) of a resistant genotype (PI 437970, Rbs3). Leaf, stem, and root tissues were collected 12, 24, and 36 h after stab inoculation with P. gregata, or mock infection, in the plant stem. By using multiple tissues and time points, we could see that leaves, stems, and roots use the same defense pathways. Our analyses suggest that P. gregata induces a biphasic defense response, with pathogen-associated molecular pattern (PAMP) triggered immunity observed in leaves at 12 and 24 h after infection (HAI) and effector triggered immunity detected at 36 h after infection in the stems. Gene networks associated with defense, photosynthesis, nutrient homeostasis, DNA replication, and growth are the hallmarks of resistance to P. gregata. While P. gregata is a slow-growing pathogen, our results demonstrate that pathogen recognition occurs hours after infection. By exploiting the genes and networks described here, we will be able to develop novel diagnostic tools to facilitate breeding and screening for BSR resistance.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">33217212</PMID>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1940-3372</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2020</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>The plant genome</Title>
<ISOAbbreviation>Plant Genome</ISOAbbreviation>
</Journal>
<ArticleTitle>New tools for characterizing early brown stem rot disease resistance signaling in soybean.</ArticleTitle>
<Pagination>
<MedlinePgn>e20037</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/tpg2.20037</ELocationID>
<Abstract>
<AbstractText>Brown stem rot (BSR) reduces soybean [Glycine max (L.) Merr.] yield by up to 38%. The BSR causal agent is Phialophora gregata f. sp. sojae, a slow-growing, necrotrophic fungus whose life cycle includes latent and pathogenic phases, each lasting several weeks. Brown stem rot foliar symptoms are often misdiagnosed as other soybean diseases or nutrient stress, making BSR resistance especially difficult to phenotype. To shed light on the genes and networks contributing to P. gregata resistance, we conducted RNA sequencing (RNA-seq) of a resistant genotype (PI 437970, Rbs3). Leaf, stem, and root tissues were collected 12, 24, and 36 h after stab inoculation with P. gregata, or mock infection, in the plant stem. By using multiple tissues and time points, we could see that leaves, stems, and roots use the same defense pathways. Our analyses suggest that P. gregata induces a biphasic defense response, with pathogen-associated molecular pattern (PAMP) triggered immunity observed in leaves at 12 and 24 h after infection (HAI) and effector triggered immunity detected at 36 h after infection in the stems. Gene networks associated with defense, photosynthesis, nutrient homeostasis, DNA replication, and growth are the hallmarks of resistance to P. gregata. While P. gregata is a slow-growing pathogen, our results demonstrate that pathogen recognition occurs hours after infection. By exploiting the genes and networks described here, we will be able to develop novel diagnostic tools to facilitate breeding and screening for BSR resistance.</AbstractText>
<CopyrightInformation>© 2020 The Authors. The Plant Genome published by Wiley Periodicals, Inc. on behalf of Crop Science Society of America.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>McCabe</LastName>
<ForeName>Chantal E</ForeName>
<Initials>CE</Initials>
<AffiliationInfo>
<Affiliation>USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, 50011-1010, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Graham</LastName>
<ForeName>Michelle A</ForeName>
<Initials>MA</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-9842-7701</Identifier>
<AffiliationInfo>
<Affiliation>USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, 50011-1010, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Agronomy, Iowa State University, Ames, IA, 50011-1010, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>5030-21220-006-00D</GrantID>
<Agency>United States Department of Agriculture, Agricultural Research Service (USDA-ARS)</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Iowa State University Department of Agronomy</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Genome</MedlineTA>
<NlmUniqueID>101273919</NlmUniqueID>
<ISSNLinking>1940-3372</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>09</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>05</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>05</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>11</Month>
<Day>20</Day>
<Hour>17</Hour>
<Minute>20</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>11</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>11</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33217212</ArticleId>
<ArticleId IdType="doi">10.1002/tpg2.20037</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Adee, E. A., Grau, C. R., & Oplinger, E. S. (1997). Population dynamics of Phialophora gregata in soybean residue. Plant Disease, 81, 199-203. https://doi.org/10.1094/PDIS.1997.81.2.199</Citation>
</Reference>
<Reference>
<Citation>Afzal, A. J., da Cunha, L., & Mackey, D. (2011). Separable fragments and membrane tethering of Arabidopsis RIN4 regulate its suppression of PAMP-triggered immunity. Plant Cell, 23, 3798-3811. https://doi.org/10.1105/tpc.111.088708</Citation>
</Reference>
<Reference>
<Citation>Allington, W. B., & Chamberlain, D. W. (1948). Brown stem rot of soybean. Phytopathology, 23, 793-802.</Citation>
</Reference>
<Reference>
<Citation>Babu, M., Gagarinova, A. G., Brandle, J. E., & Wang, A. (2008). Association of the transcriptional response of soybean plants with soybean mosaic virus systemic infection. Journal of General Virology, 89, 1069-1080. https://doi.org/10.1099/vir.0.83531-0</Citation>
</Reference>
<Reference>
<Citation>Bachman, M., & Nickell, C. (2000). High frequency of brown stem rot resistance in soybean germplasm from central and southern China. Plant Disease, 84, 694-699. https://doi.org/10.1094/pdis.2000.84.6.694</Citation>
</Reference>
<Reference>
<Citation>Bachman, M. S., Nickell, C. D., Stephens, P. A., & Nickell, A. D. (1997). Brown stem rot resistance in soybean germ plasm from central China. Plant disease, 81, 953-956. https://doi.org/10.1094/PDIS.1997.81.8.953</Citation>
</Reference>
<Reference>
<Citation>Bachman, M. S., Tamulonis, J. P., Nickell, C. D., & Bent, A. F. (2001). Molecular markers linked to brown stem rot resistance genes, Rbs1 and Rbs2, in soybean. Crop Science, 41, 527-535. https://doi.org/10.2135/cropsci2001.412527x</Citation>
</Reference>
<Reference>
<Citation>Balmer, D., & Mauch-Mani, B. (2013). More beneath the surface? Root versus shoot antifungal plant defenses. Frontiers in Plant Science, 4, 256. https://doi.org/10.3389/2Ffpls.2013.00256</Citation>
</Reference>
<Reference>
<Citation>Bariola, P. A., Howard, C. J., Taylor, C. B., Verburg, M. T., Jaglan, V. D., & Green, P. J. (1994). The Arabidopsis ribonuclease gene RNS1 is tightly controlled in response to phosphate limitation. Plant Journal, 6, 673-685. https://doi.org/10.1046/j.1365-313X.1994.6050673.x</Citation>
</Reference>
<Reference>
<Citation>Bartels, S., Anderson, J. C., Besteiro, M. A. G., Carreri, A., Hirt, H., Buchala, A., … Ulm, R. (2009). MAP KINASE PHOSPHATASE1 and PROTEIN TYROSINE PHOSPHATASE1 are repressors of salicylic acid synthesis and SNC1-mediated responses in Arabidopsis. Plant Cell, 21, 2884-2897. https://doi.org/10.1105/tpc.109.067678</Citation>
</Reference>
<Reference>
<Citation>Bernacki, M. J., Czarnocka, W., Szechyńska-Hebda, M., Mittler, R., & Karpiński, S. (2019). Biotechnological potential of LSD1, EDS1, and PAD4 in the improvement of crops and industrial plants. Plants, 8, 290. https://doi.org/10.3390/plants8080290</Citation>
</Reference>
<Reference>
<Citation>Bernard, R. L., & Cremeens, C. R. (1988). Registration of ‘Corsoy 79’ soybean. Crop Science, 28, 1027. https://doi.org/10.2135/cropsci1988.0011183X002800060047x</Citation>
</Reference>
<Reference>
<Citation>Bhandari, D. D., Lapin, D., Kracher, B., von Born, P., Bautor, J., Niefind, K., & Parker, J. E. (2019). An EDS1 heterodimer signalling surface enforces timely reprogramming of immunity genes in Arabidopsis. Nature Communications, 10, 772. https://doi.org/10.1038/s41467-019-08783-0</Citation>
</Reference>
<Reference>
<Citation>Bilgin, D. D., Zavala, J. A., Zhu, J., Clough, S. J., Ort, D. R., & DeLucia, E. (2010). Biotic stress globally downregulates photosynthesis genes. Plant, Cell & Environment, 33, 1597-1613. https://doi.org/10.1111/j.1365-3040.2010.02167.x</Citation>
</Reference>
<Reference>
<Citation>Birkenbihl, R. P., Kracher, B., Roccaro, M., & Somssich, I. E. (2017). Induced genome-wide binding of three Arabidopsis WRKY transcription factors during early MAMP-triggered immunity. Plant Cell, 29, 20-38. https://doi.org/10.1105/tpc.16.00681</Citation>
</Reference>
<Reference>
<Citation>Bolton, M. D. (2009). Primary metabolism and plant defense-Fuel for the fire. Molecular Plant-Microbe Interactions, 22, 487-497. https://doi.org/10.1094/MPMI-22-5-0487</Citation>
</Reference>
<Reference>
<Citation>Bonferroni, C. E. (1935). Il calcolo delle assicurazioni su gruppi di teste. Rome, Italy: Tipografia del Senato.</Citation>
</Reference>
<Reference>
<Citation>Boudsocq, M., Danquah, A., de Zélicourt, A., Hirt, H., & Colcombet, J. (2015). Plant MAPK cascades: Just rapid signaling modules? Plant Signaling & Behavior, 10, e1062197. https://doi.org/10.1080/2F15592324.2015.1062197</Citation>
</Reference>
<Reference>
<Citation>Bryant, N., Lloyd, J., Sweeney, C., Myouga, F., & Meinke, D. (2011). Identification of nuclear genes encoding chloroplast-localized proteins required for embryo development in Arabidopsis. Plant Physiology, 155, 1678-1689. https://doi.org/10.1104/pp.110.168120</Citation>
</Reference>
<Reference>
<Citation>Campe, R., Loehrer, M., Conrath, U., & Goellner, K. (2014). Phakopsora pachyrhizi induces defense marker genes to necrotrophs in Arabidopsis thaliana. Physiological and Molecular Plant Pathology, 87, 1-8. https://doi.org/10.1016/j.pmpp.2014.04.005</Citation>
</Reference>
<Reference>
<Citation>Chauvin, A., Caldelari, D., Wolfender, J. L., & Farmer, E. E. (2013). Four 13-lipoxygenases contribute to rapid jasmonate synthesis in wounded Arabidopsis thaliana leaves: A role for lipoxygenase 6 in responses to long-distance wound signals. New Phytologist, 197, 566-575. https://doi.org/10.1111/nph.12029</Citation>
</Reference>
<Reference>
<Citation>Chen, Y. F., Li, L. Q., Xu, Q., Kong, Y. H., Wang, H., & Wu, W. H. (2009). The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis. Plant Cell, 21, 3554-3566. https://doi.org/10.1105/tpc.108.064980</Citation>
</Reference>
<Reference>
<Citation>Choi, H. W., & Klessig, D. F. (2016). DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC Plant Biology, 16, 232. https://doi.org/10.1186/s12870-016-0921-2</Citation>
</Reference>
<Reference>
<Citation>Choi, W. G., Hilleary, R., Swanson, S. J., Kim, S. H., & Gilroy, S. (2016). Rapid, long-distance electrical and calcium signaling in plants. Annual Review of Plant Biology, 67, 287-307. https://doi.org/10.1146/annurev-arplant-043015-112130</Citation>
</Reference>
<Reference>
<Citation>Colcombet, J., & Krysan, P. J. (2018). Cellular complexity in MAPK signaling in plants: Questions and emerging tools to answer them. Frontiers in Plant Science, 9, 1674. https://doi.org/10.3389/fpls.2018.01674</Citation>
</Reference>
<Reference>
<Citation>Coll, N., Smidler, A., Puigvert, M., Popa, C., Valls, M., & Dangl, J. (2014). The plant metacaspase AtMC1 in pathogen-triggered programmed cell death and aging: Functional linkage with autophagy. Cell Death & Differentiation, 21, 1399-1408. https://doi.org/10.1038/cdd.2014.50</Citation>
</Reference>
<Reference>
<Citation>Crop Protection Network (2019). Brown stem rot of soybean. Retrieved from https://cropprotectionnetwork.org/resources/articles/diseases/brown-stem-rot-of-soybean</Citation>
</Reference>
<Reference>
<Citation>Cui, H., Qiu, J., Zhou, Y., Bhandari, D. D., Zhao, C., Bautor, J., & Parker, J. E. (2018). Antagonism of transcription factor MYC2 by EDS1/PAD4 complexes bolsters salicylic acid defense in Arabidopsis effector-triggered immunity. Molecular Plant Pathology, 11, 1053-1066. https://doi.org/10.1016/j.molp.2018.05.007</Citation>
</Reference>
<Reference>
<Citation>de Torres Zabela, M., Fernandez-Delmond, I., Niittyla, T., Sanchez, P., & Grant, M. (2002). Differential expression of genes encoding Arabidopsis phospholipases after challenge with virulent or avirulent Pseudomonas isolates. Molecular Plant-Microbe Interactions, 15, 808-816. https://doi.org/10.1094/mpmi.2002.15.8.808</Citation>
</Reference>
<Reference>
<Citation>Dong, H., Shi, S., Zhang, C., Zhu, S., Li, M., Tan, J., … Wang, X. (2018). Transcriptomic analysis of genes in soybean in response to Peronospora manshurica infection. BMC Genomics, 19, 366. https://doi.org/10.1186/s12864-018-4741-7</Citation>
</Reference>
<Reference>
<Citation>Eathington, S. R., Nickell, C. D., & Gray, L. E. (1995). Inheritance of brown stem rot resistance in soybean cultivar BSR 101. Journal of Heredity, 86, 55-60. https://doi.org/10.1093/oxfordjournals.jhered.a111526</Citation>
</Reference>
<Reference>
<Citation>Feys, B. J., Wiermer, M., Bhat, R. A., Moisan, L. J., Medina-Escobar, N., Neu, C., … Parker, J. E. (2005). Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity. Plant Cell, 17, 2601-2613. https://doi.org/10.1105/tpc.105.033910</Citation>
</Reference>
<Reference>
<Citation>Fisher, S. R. A. (1960). The design of experiments. Edinburgh: Oliver and Boyd.</Citation>
</Reference>
<Reference>
<Citation>Gao, X., Chen, X., Lin, W., Chen, S., Lu, D., Niu, Y., … Sheen, J. (2013). Bifurcation of Arabidopsis NLR immune signaling via Ca2+-dependent protein kinases. PLoS Pathoggens, 9, e1003127. https://doi.org/10.1371/journal.ppat.1003127</Citation>
</Reference>
<Reference>
<Citation>Giri, M. K., Singh, N., Banday, Z. Z., Singh, V., Ram, H., Singh, D., … Nandi, A. K. (2017). GBF1 differentially regulates CAT2 and PAD4 transcription to promote pathogen defense in Arabidopsis thaliana. The Plant Journal, 91, 802-815. https://doi.org/10.1111/tpj.13608</Citation>
</Reference>
<Reference>
<Citation>Göhre, V., Jones, A. M., Sklenář, J., Robatzek, S., & Weber, A. P. (2012). Molecular crosstalk between PAMP-triggered immunity and photosynthesis. Molecular Plant-Microbe Interactions, 25, 1083-1092. https://doi.org/10.1094/MPMI-11-11-0301</Citation>
</Reference>
<Reference>
<Citation>Gray, L. E. (1972). Effect of Cephalosporium gregatum on soybean yield. Plant Disease Reporter, 56, 580-581.</Citation>
</Reference>
<Reference>
<Citation>Hanson, P. M., Nickell, C. D., Gray, L. E., & Sebastian, S. A. (1988). Identification of two dominant genes conditioning brown stem rot resistance in soybean. Crop Science, 28, 41-43. https://doi.org/10.2135/cropsci1988.0011183X002800010010x</Citation>
</Reference>
<Reference>
<Citation>Harrington, T. C., & McNew, D. L. (2003). Phylogenetic analysis places the Phialophora-like anamorph genus Cadophora in the Helotiales. Mycotaxon, 87, 141-152.</Citation>
</Reference>
<Reference>
<Citation>Harrington, T. C., Steimel, J., Workneh, F., & Yang, X. B. (2003). Characterization and distribution of two races of Phialophora gregata in the north-central United States. Phytopathology, 93, 901-912. https://doi.org/10.1094/phyto.2003.93.7.901</Citation>
</Reference>
<Reference>
<Citation>Hassidim, M., Yakir, E., Fradkin, D., Hilman, D., Kron, I., Keren, N., … Green, R. M. (2007). Mutations in CHLOROPLAST RNA BINDING provide evidence for the involvement of the chloroplast in the regulation of the circadian clock in Arabidopsis. The Plant Journal, 51, 551-562. https://doi.org/10.1111/j.1365-313x.2007.03160.x</Citation>
</Reference>
<Reference>
<Citation>IlliniFS. (2019). Don't let look-alike symptoms lead to misdiagnosis of sudden death syndrome. Retrieved from https://www.illinifs.com/Products-Services/Resource-Center/Resource-Detail/dont-let-look-alike-symptoms-lead-to-misdiagnosis-of-sudden-death-syndrome</Citation>
</Reference>
<Reference>
<Citation>Impullitti, A. E., & Malvick, D. K. (2014). Anatomical response and infection of soybean during latent and pathogenic infection by type A and B of Phialophora gregata. PLoS ONE, 9, e98311. https://doi.org/10.1371/journal.pone.0098311</Citation>
</Reference>
<Reference>
<Citation>Kazan, K., & Manners, J. M. (2013). MYC2: The master in action. Molecular Plant, 6, 686-703. https://doi.org/10.1093/mp/sss128</Citation>
</Reference>
<Reference>
<Citation>Khan, G. A., Bouraine, S., Wege, S., Li, Y., de Carbonnel, M., Berthomieu, P., … Rouached, H. (2014). Coordination between zinc and phosphate homeostasis involves the transcription factor PHR1, the phosphate exporter PHO1, and its homologue PHO1;H3 in Arabidopsis. Journal of Experimental Botany, 65, 871-884. https://www.doi.org/10.1093/jxb/ert444</Citation>
</Reference>
<Reference>
<Citation>Kim, K. H., Kang, Y. J., Kim, D. H., Yoon, M. Y., Moon, J. K., Kim, M. Y., … Lee, S. H. (2011). RNA-Seq analysis of a soybean near-isogenic line carrying bacterial leaf pustule-resistant and-susceptible alleles. DNA Research, 18, 483-497. https://doi.org/10.1093/dnares/dsr033</Citation>
</Reference>
<Reference>
<Citation>Klink, V. P., Overall, C. C., Alkharouf, N. W., MacDonald, M. H., & Matthews, B. F. (2007). A time-course comparative microarray analysis of an incompatible and compatible response by Glycine max (soybean) to Heterodera glycines (soybean cyst nematode) infection. Planta, 226, 1423-1447. https://doi.org/10.1007/s00425-007-0581-4</Citation>
</Reference>
<Reference>
<Citation>Klos, K. L. E., Paz, M. M., Fredrick Marek, L., Cregan, P. B., & Shoemaker, R. C. (2000). Molecular markers useful for detecting resistance to brown stem rot in soybean. Crop Science, 40, 1445-1452. https://doi.org/10.2135/cropsci2000.4051445x</Citation>
</Reference>
<Reference>
<Citation>Lai, Y. S., Stefano, G., Zemelis-Durfee, S., Ruberti, C., Gibbons, L., & Brandizzi, F. (2018). Systemic signaling contributes to the unfolded protein response of the plant endoplasmic reticulum. Nature Communications, 9, 3918. https://doi.org/10.1038/s41467-018-06289-9</Citation>
</Reference>
<Reference>
<Citation>Lanubile, A., Muppirala, U. K., Severin, A. J., Marocco, A., & Munkvold, G. P. (2015). Transcriptome profiling of soybean (Glycine max) roots challenged with pathogenic and non-pathogenic isolates of Fusarium oxysporum. BMC Genomics, 16, 1089. https://doi.org/10.1186/2Fs12864-015-2318-2</Citation>
</Reference>
<Reference>
<Citation>Lawrence, M., Gentleman, R., & Carey, V. (2009). Rtracklayer: An R package for interfacing with genome browsers. Bioinformatics, 25, 1841-1842. https://doi.org/10.1093/bioinformatics/btp328</Citation>
</Reference>
<Reference>
<Citation>Lawrence, M., Huber, W., Pages, H., Aboyoun, P., Carlson, M., Gentleman, R., … Carey, V. J. (2013). Software for computing and annotating genomic ranges. PLoS Computational Biology, 9, e1003118. https://doi.org/10.1371/journal.pcbi.1003118</Citation>
</Reference>
<Reference>
<Citation>Lewers, K. S., Crane, E. H., Bronson, C. R., Schupp, J. M., Keim, P., & Shoemaker, R. C. (1999). Detection of linked QTL for soybean brown stem rot resistance in ‘BSR 101’ as expressed in a growth chamber environment*. Molecular Breeding, 5, 33-42. https://doi.org/10.1023/A:1009634710039</Citation>
</Reference>
<Reference>
<Citation>Li, H., Chang, J., Zheng, J., Don g, Y., Liu, Q., Yang, X., … Zhang, X. (2017). Local melatonin application induces cold tolerance in distant organs of Citrullus lanatus L. via long distance transport. Scientific Reports, 7, 40858. https://doi.org/10.1038/srep40858</Citation>
</Reference>
<Reference>
<Citation>Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., … Durbin, R. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25, 2078-2079. https://doi.org/10.1093/bioinformatics/btp352</Citation>
</Reference>
<Reference>
<Citation>Li, Y., Chen, L., Mu, J., & Zuo, J. (2013). LESION SIMULATING DISEASE1 interacts with catalases to regulate hypersensitive cell death in Arabidopsis. Plant Physiology, 163, 1059-1070. https://doi.org/10.1104/pp.113.225805</Citation>
</Reference>
<Reference>
<Citation>Li, Y., Zou, J., Li, M., Bilgin, D. D., Vodkin, L. O., Hartman, G. L., & Clough, S. J. (2008). Soybean defense responses to the soybean aphid. New Phytologist, 179, 185-195. https://doi.org/10.1111/j.1469-8137.2008.02443.x</Citation>
</Reference>
<Reference>
<Citation>Lin, F., Zhao, M., Baumann, D. D., Ping, J., Sun, L., Liu, Y., … Doerge, R. W. (2014). Molecular response to the pathogen Phytophthora sojae among ten soybean near isogenic lines revealed by comparative transcriptomics. BMC Genomics, 15, 18. https://doi.org/10.1186/1471-2164-15-18</Citation>
</Reference>
<Reference>
<Citation>Liu, J. Z., Horstman, H. D., Braun, E., Graham, M. A., Zhang, C., Navarre, D., … Hill, J. H. (2011). Soybean homologs of MPK4 negatively regulate defense responses and positively regulate growth and development. Plant Physiology, 157, 1363-1378. https://doi.org/10.1104/pp.111.185686</Citation>
</Reference>
<Reference>
<Citation>Liu, J. Z., & Whitham, S. A. (2013). Overexpression of a soybean nuclear localized type-III DnaJ domain-containing HSP40 reveals its roles in cell death and disease resistance. The Plant Journal, 74, 110-121. https://doi.org/10.1111/tpj.12108</Citation>
</Reference>
<Reference>
<Citation>Liu, T. Y., Huang, T. K., Tseng, C. Y., Lai, Y. S., Lin, S. I., Lin, W. Y., … Chiou, T. J. (2012). PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in Arabidopsis. Plant Cell, 24, 2168-2183. https://doi.org/10.1105/tpc.112.096636</Citation>
</Reference>
<Reference>
<Citation>Loehrer, M., Langenbach, C., Goellner, K., Conrath, U., & Schaffrath, U. (2008). Characterization of nonhost resistance of Arabidopsis to the Asian soybean rust. Molecular Plant-Microbe Interactions, 21, 1421-1430. https://doi.org/10.1105/tpc.112.096636</Citation>
</Reference>
<Reference>
<Citation>Lorang, J. (2019). Necrotrophic exploitation and subversion of plant defense: A lifestyle or just a phase, and implications in breeding resistance. Phytopathology, 109, 332-346. https://doi.org/10.1094/PHYTO-09-18-0334-IA</Citation>
</Reference>
<Reference>
<Citation>Malvick, D., & Grunden, E. (2008). Association between genotypes of the brown stem rot pathogen Phialophora gregata and resistant and susceptible soybean cultivars in the north-central United States and Ontario. Canadian Journal of Plant Pathology, 30, 581-587. https://doi.org/10.1080/07060660809507558</Citation>
</Reference>
<Reference>
<Citation>McCabe, C. E., Cianzio, S. R., O'Rourke, J. A., & Graham, M. A. (2018). Leveraging RNA-Seq to characterize resistance to brown stem rot and the Rbs3 locus in soybean. Molecular Plant-Microbe Interactions, 31, 1083-1094. https://doi.org/10.1094/MPMI-01-18-0009-R</Citation>
</Reference>
<Reference>
<Citation>McCabe, C. E., Singh, A. K., Leandro, L. F., Cianzio, S. C., & Graham, M. A. (2016). Identifying new sources of resistance to brown stem rot in soybean. Crop Science, 56, 2287-2296. https://doi.org/10.2135/cropsci2015.08.0492</Citation>
</Reference>
<Reference>
<Citation>McCarthy, D. J., Chen, Y., & Smyth, G. K. (2012). Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res., 40, 4288-4297. https://doi.org/10.1093/nar/gks042</Citation>
</Reference>
<Reference>
<Citation>Melan, M. A., Dong, X., Endara, M. E., Davis, K. R., Ausubel, F. M., & Peterman, T. K. (1993). An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate. Plant Physiology, 101, 441-450. https://doi.org/10.1104/pp.101.2.441</Citation>
</Reference>
<Reference>
<Citation>Meyer, J. D., Silva, D. C., Yang, C., Pedley, K. F., Zhang, C., van de Mortel, M., … Whitham, S. A. (2009). Identification and analyses of candidate genes for Rpp4-mediated resistance to Asian soybean rust in soybean. Plant Physiology, 150, 295-307. https://doi.org/10.1104/pp.108.134551</Citation>
</Reference>
<Reference>
<Citation>Montana State University Extension. (2011). Plant nutrient functions and deficiency and toxicity symptoms. Retrieved from http://landresources.montana.edu/nm/documents/NM9.pdf</Citation>
</Reference>
<Reference>
<Citation>Morales, A. M., O'Rourke, J. A., Van De Mortel, M., Scheider, K. T., Bancroft, T. J., Borém, A., … Shoemaker, R. C. (2013). Transcriptome analyses and virus induced gene silencing identify genes in the Rpp4-mediated Asian soybean rust resistance pathway. Functional Plant Biology, 40, 1029-1047. https://doi.org/10.1071/FP12296</Citation>
</Reference>
<Reference>
<Citation>Morgan, M., & Pages, H. (2013). Rsamtools: Binary alignment (BAM), variant call (BCF), or tabix file import. (R package version 1.12.4). Retrieved from http://bioconductor.org/packages/Rsamtools</Citation>
</Reference>
<Reference>
<Citation>Murtagh, F., & Legendre, P. (2014). Ward's hierarchical agglomerative clustering method: Which algorithms implement Ward's criterion? Journal of Classification, 31, 274-295. https://doi.org/10.1007/s00357-014-9161-z</Citation>
</Reference>
<Reference>
<Citation>Nakamura, Y., Koizumi, R., Shui, G., Shimojima, M., Wenk, M. R., Ito, T., & Ohta, H. (2009). Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation. Proceedings of the National Academy of Sciences of the United States of America, 106, 20978-20983. https://doi.org/10.1007/s00357-014-9161-z</Citation>
</Reference>
<Reference>
<Citation>Nelson, R. L., Nickell, C. D., Orf, J. H., Tachibana, H., Gritton, E. T., Grau, C. R., & Kennedy, B. W. (1989). Evaluating soybean germ plasm for brown stem rot resistance. Plant disease, 73, 110-114. https://doi.org/10.1094/pd-73-0110</Citation>
</Reference>
<Reference>
<Citation>Pandey, A. K., Yang, C., Zhang, C., Graham, M. A., Horstman, H. D., Lee, Y., … Whitham, S. A. (2011). Functional analysis of the Asian soybean rust resistance pathway mediated by Rpp2. Molecular Plant-Microbe Interactions, 24, 194-206. https://doi.org/10.1094/MPMI-08-10-0187</Citation>
</Reference>
<Reference>
<Citation>Park, S., Lee, C. M., Doherty, C. J., Gilmour, S. J., Kim, Y., & Thomashow, M. F. (2015). Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network. The Plant Journal, 82, 193-207. https://doi.org/10.1111/tpj.12796</Citation>
</Reference>
<Reference>
<Citation>PennState Extension. (2018). Soybean sudden death and brown stem rot: How to tell the difference. Retrieved from https://extension.psu.edu/soybean-sudden-death-and-brown-stem-rot-how-to-tell-the-difference</Citation>
</Reference>
<Reference>
<Citation>Perez, P. T., Diers, B. W., Lundeen, P., Tabor, G. M., & Cianzio, S. R. (2010). Genetic analysis of new sources of soybean resistance to brown stem rot. Crop Science, 50, 2431-2439. https://doi.org/10.2135/cropsci2010.03.0159</Citation>
</Reference>
<Reference>
<Citation>Puga, M. I., Mateos, I., Charukesi, R., Wang, Z., Franco-Zorrilla, J. M., de Lorenzo, L., … Rodríguez, J. (2014). SPX1 is a phosphate-dependent inhibitor of PHOSPHATE STARVATION RESPONSE 1 in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 111, 14947-14952. https://doi.org/10.1073/pnas.1404654111</Citation>
</Reference>
<Reference>
<Citation>R CoreTeam. (2014). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.</Citation>
</Reference>
<Reference>
<Citation>Rincker, K., Hartman, G. L., & Diers, B. W. (2016). Fine mapping of resistance genes from five brown stem rot resistance sources in soybean. The Plant Genome, 9, 1-14. https://doi.org/10.3835/plantgenome2015.08.0063</Citation>
</Reference>
<Reference>
<Citation>Rincker, K., Lipka, A. E., & Diers, B. W. (2016). Genome-wide association study of brown stem rot resistance in soybean across multiple populations. The Plant Genome, 9, 1-11. https://doi.org/10.3835/plantgenome2015.08.0064</Citation>
</Reference>
<Reference>
<Citation>Rivero, C., Traubenik, S., Zanetti, M. E., & Blanco, F. A. (2017). Small GTPases in plant biotic interactions. Small GTPases, 10, 350-360. https://doi.org/10.1080/21541248.2017.1333557</Citation>
</Reference>
<Reference>
<Citation>Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139-140. https://doi.org/10.1093/bioinformatics/btp616</Citation>
</Reference>
<Reference>
<Citation>Robinson, M. D., & Oshlack, A. (2010). A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology, 11, R25. https://doi.org/10.1186/gb-2010-11-3-r25</Citation>
</Reference>
<Reference>
<Citation>Robinson, M. D., & Smyth, G. K. (2007). Moderated statistical tests for assessing differences in tag abundance. Bioinformatics, 23, 2881-2887. https://doi.org/10.1093/bioinformatics/btm453</Citation>
</Reference>
<Reference>
<Citation>Robinson, M. D., & Smyth, G. K. (2008). Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics, 9, 321-332. https://doi.org/10.1093/biostatistics/kxm030</Citation>
</Reference>
<Reference>
<Citation>Schmutz, J., Cannon, S. B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., … Cheng, J. (2010). Genome sequence of the palaeopolyploid soybean. Nature, 463, 178-183. https://doi.org/10.1038/nature08670</Citation>
</Reference>
<Reference>
<Citation>Schneider, K. T., Van de Mortel, M., Bancroft, T. J., Braun, E., Nettleton, D., Nelson, R. T., … Whitham, S. A. (2011). Biphasic gene expression changes elicited by Phakopsora pachyrhizi in soybean correlate with fungal penetration and haustoria formation. Plant Physiology, 157, 355-371. https://doi.org/10.1104/pp.111.181149</Citation>
</Reference>
<Reference>
<Citation>Secco, D., Bouain, N., Rouached, A., Prom-u-Thai, C., Hanin, M., Pandey, A. K., & Rouached, H. (2017). Phosphate, phytate and phytases in plants: From fundamental knowledge gained in Arabidopsis to potential biotechnological applications in wheat. Critical Reviews in Biotechnology, 37, 898-910. https://doi.org/10.1080/07388551.2016.1268089</Citation>
</Reference>
<Reference>
<Citation>Selote, D., Robin, G. P., & Kachroo, A. (2013). GmRIN4 protein family members function nonredundantly in soybean race-specific resistance against Pseudomonas syringae. New Phytologist, 197, 1225-1235. https://doi.org/10.1111/nph.12093</Citation>
</Reference>
<Reference>
<Citation>Shi, S., Li, S., Asim, M., Mao, J., Xu, D., Ullah, Z., … Liu, H. (2018). The Arabidopsis calcium-dependent protein kinases (CDPKs) and their roles in plant growth regulation and abiotic stress responses. International Journal of Molecular Sciences, 19, 1900. https://doi.org/10.3390/ijms19071900</Citation>
</Reference>
<Reference>
<Citation>Sirpiö, S., Khrouchtchova, A., Allahverdiyeva, Y., Hansson, M., Fristedt, R., Vener, A. V., … Aro, E. M. (2008). AtCYP38 ensures early biogenesis, correct assembly and sustenance of photosystem II. The Plant Journal, 55, 639-651. https://doi.org/10.1111/j.1365-313X.2008.03532.x</Citation>
</Reference>
<Reference>
<Citation>Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., … Bork, P. (2018). STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47, D607-D613. https://doi.org/10.1093/nar/gky1131</Citation>
</Reference>
<Reference>
<Citation>Tabor, G. M., Tylka, G. L., & Bronson, C. R. (2007). Genotypes A and B of Cadophora gregata differ in ability to colonize susceptible soybean. Plant Disease, 91, 574-580. https://doi.org/10.1094/pdis-91-5-0574</Citation>
</Reference>
<Reference>
<Citation>Tabor, G. M., Tylka, G. L., Cianzio, S. C., & Bronson, C. R. (2003). Resistance to Phialophora gregata is expressed in the stems of resistant soybeans. Plant Disease, 87, 970-976. https://doi.org/10.1094/PDIS.2003.87.8.970</Citation>
</Reference>
<Reference>
<Citation>Teige, M., Scheikl, E., Eulgem, T., Dóczi, R., Ichimura, K., Shinozaki, K., … Hirt, H. (2004). The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Molecular Cell, 15, 141-152. https://doi.org/10.1016/j.molcel.2004.06.023</Citation>
</Reference>
<Reference>
<Citation>Thibaud, M. C., Arrighi, J. F., Bayle, V., Chiarenza, S., Creff, A., Bustos, R., … Nussaume, L. (2010). Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis. The Plant Journal, 64, 775-789. https://doi.org/10.1111/j.1365-313X.2010.04375.x</Citation>
</Reference>
<Reference>
<Citation>Tian, D., Traw, M., Chen, J., Kreitman, M., & Bergelson, J. (2003). Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature, 423, 74-77. https://doi.org/10.1038/nature01588</Citation>
</Reference>
<Reference>
<Citation>Trapnell, C., Pachter, L., & Salzberg, S. L. (2009). TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics, 25, 1105-1111. https://doi.org/10.1093/bioinformatics/btp120</Citation>
</Reference>
<Reference>
<Citation>University of Nebraska-Lincoln Cropwatch. (2015). Sudden death syndrome and brown stem rot infections start in spring. Retrieved from https://cropwatch.unl.edu/sudden-death-syndrome-and-brown-stem-rot-infections-start-spring</Citation>
</Reference>
<Reference>
<Citation>van de Mortel, M., Recknor, J. C., Graham, M. A., Nettleton, D., Dittman, J. D., Nelson, R. T., … Baum, T. J. (2007). Distinct biphasic mRNA changes in response to Asian soybean rust infection. Molecular Plant-Microbe Interactions, 20, 887-899. https://doi.org/10.1094/MPMI-20-8-0887</Citation>
</Reference>
<Reference>
<Citation>Versaw, W. K., & Harrison, M. J. (2002). A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses. Plant Cell, 14, 1751-1766. https://doi.org/10.1105/tpc.002220</Citation>
</Reference>
<Reference>
<Citation>Vojta, L., Carić, D., Cesar, V., Dunić, J. A., Lepeduš, H., Kveder, M., & Fulgosi, H. (2015). TROL-FNR interaction reveals alternative pathways of electron partitioning in photosynthesis. Scientific Reports, 5, 10085. https://doi.org/10.1038/srep10085</Citation>
</Reference>
<Reference>
<Citation>Voll, L. M., Jamai, A., Renné, P., Voll, H., McClung, C. R., & Weber, A. P. (2006). The photorespiratory Arabidopsis shm1 mutant is deficient in SHM1. Plant Physiology, 140, 59-66. https://doi.org/10.1104/pp.105.071399</Citation>
</Reference>
<Reference>
<Citation>Wang, G., Hu, C., Zhou, J., Liu, Y., Cai, J., Pan, C., … Xia, X. (2019). Systemic root-shoot signaling drives jasmonate-based root defense against nematodes. Current Biology, 29, 3430-3438. e3434. https://doi.org/10.1016/j.cub.2019.08.049</Citation>
</Reference>
<Reference>
<Citation>Wang, J., Shine, M., Gao, Q. M., Navarre, D., Jiang, W., Liu, C., … Kachroo, A. (2014). Enhanced disease susceptibility1 mediates pathogen resistance and virulence function of a bacterial effector in soybean. Plant Physiology, 165, 1269-1284. https://doi.org/10.1104/pp.114.242495</Citation>
</Reference>
<Reference>
<Citation>Wang, Z., Libault, M., Joshi, T., Valliyodan, B., Nguyen, H. T., Xu, D., … Cheng, J. (2010). SoyDB: A knowledge database of soybean transcription factors. BMC Plant Biology, 10, 14. https://doi.org/10.1186/1471-2229-10-14</Citation>
</Reference>
<Reference>
<Citation>Warren, R. F., Henk, A., Mowery, P., Holub, E., & Innes, R. W. (1998). A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. Plant Cell, 10, 1439-1452. https://doi.org/10.1105/tpc.10.9.1439</Citation>
</Reference>
<Reference>
<Citation>Wasternack, C., & Strnad, M. (2019). Jasmonates are signals in the biosynthesis of secondary metabolites-Pathways, transcription factors and applied aspects-A brief review. New Biotechnology, 48, 1-11. https://doi.org/10.1016/j.nbt.2017.09.007</Citation>
</Reference>
<Reference>
<Citation>Wersch, Rv, Gao, F., & Zhang, Y. (2018). Mitogen-activated protein kinase kinase 6 negatively regulates anthocyanin induction in Arabidopsis. Plant Signaling & Behavior, 13, e1526000. https://doi.org/10.1080/15592324.2018.1526000</Citation>
</Reference>
<Reference>
<Citation>Wickham, H. (2009). Ggplot2: Elegant graphics for data analysis. New York, NY: Springer Science & Business Media. https://doi.org/10.1007/978-0-387-98141-3</Citation>
</Reference>
<Reference>
<Citation>Willmont, D. B., & Nickell, C. (1989). Genetic analysis of brown stem rot resistance in soybean. Crop Science, 29, 672-674. https://doi.org/10.2135/cropsci1989.0011183X002900030026x</Citation>
</Reference>
<Reference>
<Citation>Xu, H. Y., Zhang, C., Li, Z. C., Wang, Z. R., Jiang, X. X., Shi, Y. F., … Qiu, W. L. (2018). The MAPK kinase kinase GmMEKK1 regulates cell death and defense responses. Plant Signaling & Behavior, 178, 907-922. https://doi.org/10.1104/pp.18.00903</Citation>
</Reference>
<Reference>
<Citation>Yin, T., Majumder, M., Chowdhury, N. R., Cook, D., Shoemaker, R., & Graham, M. (2013). Visual mining methods for RNA-Seq data: Data structure, dispersion estimation and significance testing. Journal of Data mining in Genomics and Proteomics, 4, 2153-0602. 1000139. https://doi.org/10.4172/2153-0602.1000139</Citation>
</Reference>
<Reference>
<Citation>Yuan, H. M., Liu, W. C., & Lu, Y. T. (2017). Catalase2 coordinates SA-mediated repression of both auxin accumulation and JA biosynthesis in plant defenses. Cell Host & Microbe, 21, 143-155. https://doi.org/10.1016/j.chom.2017.01.007</Citation>
</Reference>
<Reference>
<Citation>Yuan, S., Li, R., Chen, S., Chen, H., Zhang, C., Chen, L., … Qiu, D. (2016). RNA-Seq analysis of differential gene expression responding to different rhizobium strains in soybean (Glycine max) roots. Frontiers in Plant Science, 7, 721. https://doi.org/10.3389/fpls.2016.00721</Citation>
</Reference>
<Reference>
<Citation>Zhang, C., Grosic, S., Whitham, S. A., & Hill, J. H. (2012). The requirement of multiple defense genes in soybean Rsv1-mediated extreme resistance to soybean mosaic virus. Molecular Plant-Microbe Interactions, 25, 1307-1313. https://doi.org/10.1094/MPMI-02-12-0046-R</Citation>
</Reference>
<Reference>
<Citation>Zhang, X., Zhu, Z., An, F., Hao, D., Li, P., Song, J., … Guo, H. (2014). Jasmonate-activated MYC2 represses ETHYLENE INSENSITIVE3 activity to antagonize ethylene-promoted apical hook formation in Arabidopsis. Plant Cell, 26, 1105-1117. https://doi.org/10.1105/tpc.113.122002</Citation>
</Reference>
<Reference>
<Citation>Zhang, Y., Xu, S., Ding, P., Wang, D., Cheng, Y. T., He, J., … Zhu, Z. (2010). Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 107, 18220-18225. https://doi.org/10.1073/pnas.1005225107</Citation>
</Reference>
<Reference>
<Citation>Zhou, M., Lu, Y., Bethke, G., Harrison, B. T., Hatsugai, N., Katagiri, F., & Glazebrook, J. (2018). WRKY70 prevents axenic activation of plant immunity by direct repression of SARD1. New Phytologist, 217, 700-712. https://doi.org/10.1111/nph.14846</Citation>
</Reference>
<Reference>
<Citation>Zhou, Q., Yu, Q., Wang, Z., Pan, Y., Lv, W., Zhu, L., … He, G. (2013). Knockdown of GDCH gene reveals reactive oxygen species-induced leaf senescence in rice. Plant, Cell & Environment, 36, 1476-1489. https://doi.org/10.1111/pce.12078</Citation>
</Reference>
<Reference>
<Citation>Zhou, X., Lindsay, H., & Robinson, M. D. (2014). Robustly detecting differential expression in RNA sequencing data using observation weights. Nucleic Acids Research, 42, e91. https://doi.org/10.1093/nar/gku310</Citation>
</Reference>
<Reference>
<Citation>Zhu, S., Jeong, R. D., Venugopal, S. C., Lapchyk, L., Navarre, D., Kachroo, A., & Kachroo, P. (2011). SAG101 forms a ternary complex with EDS1 and PAD4 and is required for resistance signaling against turnip crinkle virus. PLoS Pathogens, 7, e1002318. https://doi.org/10.1371/journal.ppat.1002318</Citation>
</Reference>
<Reference>
<Citation>Zou, J., Rodriguez-Zas, S., Aldea, M., Li, M., Zhu, J., Gonzalez, D. O., … Clough, S. J. (2005). Expression profiling soybean response to Pseudomonas syringae reveals new defense-related genes and rapid HR-specific downregulation of photosynthesis. Molecular Plant-Microbe Interactions, 18, 1161-1174. https://doi.org/10.1094/MPMI-18-1161</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Iowa</li>
</region>
<settlement>
<li>Ames (Iowa)</li>
</settlement>
<orgName>
<li>Université d'État de l'Iowa</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Mccabe, Chantal E" sort="Mccabe, Chantal E" uniqKey="Mccabe C" first="Chantal E" last="Mccabe">Chantal E. Mccabe</name>
</noRegion>
<name sortKey="Graham, Michelle A" sort="Graham, Michelle A" uniqKey="Graham M" first="Michelle A" last="Graham">Michelle A. Graham</name>
<name sortKey="Graham, Michelle A" sort="Graham, Michelle A" uniqKey="Graham M" first="Michelle A" last="Graham">Michelle A. Graham</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000095 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000095 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33217212
   |texte=   New tools for characterizing early brown stem rot disease resistance signaling in soybean.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33217212" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020